> Homework \#9 (100 points) - Show all work on the following problems: (Grading rubric: Solid attempt $=50 \%$ credit, Correct approach but errors = 75\% credit, Correct original solution $=100 \%$ credit, Copy of online solutions $=0 \%$ credit)

Problem 1 (20 points): Given a magnetic field of the form $\vec{B}=k z \hat{x}$ (with k a constant), find the force on a square loop with sides of length a lying in the $y-z$ plane, centered at the origin. The loop has a current I that flows counterclockwise as seen from a viewpoint looking along the x -axis.

Problem 2 (20 points): Consider a total current I flowing down a cylindrical wire with a circular cross-section of radius a.

2a (10 points): If the current I flows entirely on the surface of the wire (uniformly distributed across the surface), what is the surface current density K ?

2b (10 points): If instead the volume current density is inversely proportional to the distance s from the axis, what is $J(s)$ in terms of I and a ?

Problem 3 (30 points): Calculate the magnetic field at the center of a uniformly charged spherical shell of radius R, carrying total charge Q, and spinning around the z -axis with a uniform angular velocity ω. Hint: Start with the solution derived for the magnetic field above/below the center of a circular loop of current.

Problem 4 (30 points): Consider two infinite straight line charges with linear charge density λ, aligned parallel to each other and separated by a distance d. How fast would these two line charges have to move in order for the magnetic attraction between the wires to balance the electrostatic repulsion? Is this possible?

